다음 극한을 구하라.
$$\lim_{x\to\infty}\frac{x-3}{x^2-9}$$
풀이
유리함수이고 \(\frac{\infty}{\infty}\)꼴이므로 분모의 최고차항으로 분자와 분모를 나누면,
\(\displaystyle\lim_{x\to\infty}\frac{x-3}{x^2-9}=\lim_{x\to\infty}\frac{1/x-3/x^2}{1-9/x^2}=\frac{0-0}{1-0}=0\)
이다.
블로그
다음 극한을 구하라.
$$\lim_{x\to\infty}\frac{x-3}{x^2-9}$$
풀이
유리함수이고 \(\frac{\infty}{\infty}\)꼴이므로 분모의 최고차항으로 분자와 분모를 나누면,
\(\displaystyle\lim_{x\to\infty}\frac{x-3}{x^2-9}=\lim_{x\to\infty}\frac{1/x-3/x^2}{1-9/x^2}=\frac{0-0}{1-0}=0\)
이다.
다음 극한을 구하라.
$$\lim_{x\to2}\frac{2x^2-3x-2}{x^2-3x+2}$$
풀이
유리함수이고 \(\frac{0}{0}\)꼴이므로 인수분해 후 약분하면,
\(\displaystyle\lim_{x\to2}\frac{2x^2-3x-2}{x^2-3x+2}=\lim_{x\to2}\frac{(2x+1)(x-2)}{(x-1)(x-2)}=\lim_{x\to2}\frac{2x+1}{x-1}=5\)
이다.
다음 극한을 구하라.
$$\lim_{x\to3}\frac{x-3}{x^2-9}$$
풀이
유리함수이고 \(\frac{0}{0}\)꼴이므로 인수분해 후 약분하면,
\(\displaystyle\lim_{x\to3} \frac{x-3}{x^2-9}=\lim_{x\to3}\frac{x-3}{(x-3)(x+3)}=\lim_{x\to3}\frac{1}{x+3}=\frac{1}{6}\)
이다.
다음 함수의 정의역을 구하라.
$$f(x)=\frac{1}{\sqrt{x-2}}$$
풀이
근호 안이 \(0\) 보다 커야 하므로 \(x-2>0\), 즉, \(x>2\)가 정의역이다.
다음 함수의 정의역을 구하라.
$$f(x)=\frac{1}{x-1}+\frac{1}{x-2}$$
풀이
분모가 \(0\)인 점은 \(x=1,2\)이다.
따라서 정의역은 \(x\neq1,2\),
즉, \(\mathbb{R}-\{1,2\}\)
이다.
다음 함수의 정의역을 구하라.
$$f(x)=\sqrt{6-2x}$$
풀이
근호 안이 \(0\) 이상이어야 하므로 \(6-2x\geq0\), 즉, \(x\leq3\)이 정의역이다.
다음 함수의 정의역을 구하라.
$$f(x)=\frac{2}{\vert x\vert-1}$$
풀이
분모가 \(0\)인 점은 \(\vert x\vert-1=0\)으로부터 \(x=-1,1\)이다.
따라서 정의역은 \(x\neq-1,1\),
즉, \(\mathbb{R}-\{-1,1\}\)
이다.
\(x^2+y^2=3\)일 때 이계도함수 \(\frac{d^2y}{d^2x}\)를 구하라.
풀이
양변을 \(x\)에 대해 미분하면
\(2x+2y\frac{dy}{dx}=0\)
\(\frac{dy}{dx}=-\frac{x}{y}\)
이다.
다시 양변을 \(x\)에 대해 미분하면
\(\frac{d^2y}{d^2x}=-\frac{y-x\frac{dy}{dx}}{y^2}\)
\(=-\frac{y+\frac{x^2}{y}}{y^2}\)
\(=-\frac{x^2+y^2}{y^3}\)
\(=-\frac{3}{y^3}\)
이다.
곡선 \(3xy-y^2=2\) 위의 점 \((1,2)\)에서의 접선의 방정식을 구하라.
풀이
양변을 \(x\)에 대해 미분하면
\(3(xy)’-(y^2)’=0\)
\(3(y+x\frac{dy}{dx})-2y\frac{dy}{dx}=0\)
\((3x-2y)\frac{dy}{dx}=-3y\)
\(\frac{dy}{dx}=-\frac{3y}{3x-2y}\)
이다.
점 \((1,2)\)에서 접선의 기울기는
\(\frac{dy}{dx}\vert_{(x,y)=(1,2)}=-\frac{6}{3-4}=6\)
이다.
따라서 점 \((1,2)\)에서 접선의 방정식은
\(y-2=6(x-1)\), 즉, \(y=6x-4\)
이다.
다음 주어진 음함수에 대해 \(\frac{dy}{dx}\)를 구하라.
$$x^{1/3}+y^{1/3}=1$$
풀이
양변을 \(x\)에 대해 미분하면
\(\frac{1}{3}x^{-2/3}+\frac{1}{3}y^{-2/3}\cdot\frac{dy}{dx}=0\)
\(y^{-2/3}\cdot\frac{dy}{dx}=-x^{-2/3}\)
\(\frac{dy}{dx}=-\frac{x^{-2/3}}{y^{-2/3}}=-\frac{y^{2/3}}{x^{2/3}}=-\sqrt[3]{\frac{y^2}{x^2}}\)
이다.